Data Integrator (Python API)
Classes | Variables
cls.FunctionalSimilarity Namespace Reference

Similarity of proteins based on semantic similarity. More...

Classes

class  CFunctionalSimilarityBase
 Functional similarity computation base class. More...
 
class  CFunctionalSimilarity
 Functional similarity computation using a database connection. More...
 

Variables

string SIM_RESNIK = "resnik";
 Resnik's pairwise semantic similarity measure. More...
 
string SIM_LIN = "lin";
 Lin's pairwise semantic similarity measure. More...
 
string SIM_IC = "ic";
 Information coefficient pairwise semantic similarity measure. More...
 
string SIM_GIC = "gic";
 Graph information content pairwise semantic similarity measure. More...
 
string SIM_REL = "rel";
 Schlicker's pairwise semantic similarity measure. More...
 
string SIM_JC = "jc";
 Jiang & Conarth's pairwise semantic similarity measure. More...
 
string IC = "ICo";
 Information Content. More...
 
list SS_MEASURES = [SIM_RESNIK, SIM_LIN, SIM_IC, SIM_GIC, SIM_REL, SIM_JC];
 List of all possible semantic similarity measures. More...
 
string FUNSIM_AVG = "avg";
 Average of similarity matrix. More...
 
string FUNSIM_MAX = "max";
 Max value of similarity matrix. More...
 
string FUNSIM_RCAVGMAX = "rcavgmax";
 Maximum row/column averaged maxima of similarity matrix. More...
 
string FUNSIM_BMA = "bma";
 Best match average of similarity matrix. More...
 
string FUNSIM_BMA2 = "bma2";
 Best match average averaged of similarity matrix. More...
 

Detailed Description

Similarity of proteins based on semantic similarity.

Provides methods to compute functional similarity between UniProt identifiers using semantic similarity measures associated with proteins. The semantic similarity measures depend on an ontology.

Author
Chris X. Weichenberger
Date
2014-05-22

Variable Documentation

◆ FUNSIM_AVG

string cls.FunctionalSimilarity.FUNSIM_AVG = "avg";

Average of similarity matrix.

◆ FUNSIM_BMA

string cls.FunctionalSimilarity.FUNSIM_BMA = "bma";

Best match average of similarity matrix.

◆ FUNSIM_BMA2

string cls.FunctionalSimilarity.FUNSIM_BMA2 = "bma2";

Best match average averaged of similarity matrix.

◆ FUNSIM_MAX

string cls.FunctionalSimilarity.FUNSIM_MAX = "max";

Max value of similarity matrix.

◆ FUNSIM_RCAVGMAX

string cls.FunctionalSimilarity.FUNSIM_RCAVGMAX = "rcavgmax";

Maximum row/column averaged maxima of similarity matrix.

◆ IC

string cls.FunctionalSimilarity.IC = "ICo";

Information Content.

◆ SIM_GIC

string cls.FunctionalSimilarity.SIM_GIC = "gic";

Graph information content pairwise semantic similarity measure.

◆ SIM_IC

string cls.FunctionalSimilarity.SIM_IC = "ic";

Information coefficient pairwise semantic similarity measure.

◆ SIM_JC

string cls.FunctionalSimilarity.SIM_JC = "jc";

Jiang & Conarth's pairwise semantic similarity measure.

◆ SIM_LIN

string cls.FunctionalSimilarity.SIM_LIN = "lin";

Lin's pairwise semantic similarity measure.

◆ SIM_REL

string cls.FunctionalSimilarity.SIM_REL = "rel";

Schlicker's pairwise semantic similarity measure.

◆ SIM_RESNIK

string cls.FunctionalSimilarity.SIM_RESNIK = "resnik";

Resnik's pairwise semantic similarity measure.

◆ SS_MEASURES

list cls.FunctionalSimilarity.SS_MEASURES = [SIM_RESNIK, SIM_LIN, SIM_IC, SIM_GIC, SIM_REL, SIM_JC];

List of all possible semantic similarity measures.